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Introduction
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Introduction

3D and 4D imaging produce large amounts of data

Gigabytes. . .
. . . or even

terabytes of data

3D visualization
Sample characteriztation
Process parameterization
etc
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Different types of images

2D
Pictures
Radiographs
CT slices

3D
Volumes
x, y, z

Movies
x, y, t

4D
Volume movie
x, y, z, t

x

y

Frame 0

Frame 1

Frame N-1
Frame N

time

.
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Which information do you want to gain

Quantitative
Material composition
Material transport

Structure
Identify items
Item geometry

This will affect the choice of processing methods.
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Measurements are rarely perfect

Expected image Measured image

Artifacts

Rings

Lines

Blurring

Noise

Uncorrelated

Texture

Imaging system

Factors affecting the image quality

Resolution (Imaging system transfer functions)
Noise
Contrast
Inhomogeneous contrast
Small relevant features
Artifacts
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A typical processing chain

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

Image
Acquisition Enhancement Segmentation Post processing Evaluation

Todays lecture will focus on the enhancement
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Noise and artifacts
The unwanted information
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Noise types

Spatially uncorrelated noise
Event noise

Structured noise

Noise expamles
Gaussian Salt ’n pepper Structured

A. Kaestner (Paul Scherrer Institut) Image enhancement March 1, 2018 10 / 85



Noise models – Distributions

Gaussian noise
Additive
Easy to model
Other distributions obtain Gaussian shape at large numbers

n(x) =
1√
2πσ

e−( x−µ
2σ )2

Poisson noise
Multiplicative
Physically correct for event counting

p(x) =
λk

k !
e−λ x
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Noise examples

Gauss

Gaussian noise component

Poisson

Poisson noise component
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Noise models – Salt’n’Pepper noise

A type of outlier noise
Noise strength give as the probability of an outlier
Additive, multiplicative, independent replacement

Example

sp(x) =

 −1 x ≤ λ1
0 λ1 < x ≤ λ2
1 λ2 < x

x ∈ U(0,1)
λ1 < λ2
λ1 + λ2 = noise fraction
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Noise models – Structured noise

Spatially correlated
Example: Detector structure

Example random field models

n(x , y) ∈ N (µ, σ)

ns = K ∗ n K = convolution kernel

u5x5 ∗ =

∗ =
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Noisy profiles

50ms exposure

200 400 600 800
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400
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Signal to noise ratio

A metric to describe noise strength

SNR =
µimage

σimage
(1)

SNRdb = 20 log
µimage

σimage
(2)

Select a region
Compute average intensity
Compute std deviation
Apply eqns 1 or 2

SNR =∞ SNR = 5 SNR = 2 SNR = 1
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SNR for different exposure times

Poisson noise
E [Poi(λ)] = λ and var [Poi(λ)] = λ→ SNR=

√
λ

Exposure time increase the number of events
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Artifacts from the acquisition

Rings

Appear in most CT acquisitions
Caused by stuck pixels in the projection data
Can mostly be supressed during
reconstruction

Lines

Frequent in neutron CT slices
Caused by spots on single projections
Can mostly be supressed during
reconstruction
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Numerical artifacts

Rounding errors

May appear with sum operations on large data sets.
At some point the new term is smaller than the precision.

Instable processing

Due to incorrect regularization
Wrong parameterization
Incorrect implementation. . . bugs etc
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Image processing with Python

Python provides several packages for matrix handling and image
processing:

numpy Numeric operations scalars, lists, and matrices.
skimage Image processing for 2D and 3D images.

matplotlib Plotting and visualization.
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Some relevant python functions

Random number generators [numpy.random]

Gauss np.random.normal(µ,σ, size=[rows,cols])
Uniform np.random.uniform(low ,high,size=[rows,cols])
Poisson np.random.poisson(λ, size=[rows,cols]) alt

np.random.poisson(img, size=[rows,cols])

Generates an m × n random fields with different distributions.

Statistics
np.mean(f ), np.var(f ), np.std(f ) Computes the mean, variance, and
standard deviation of an image f .
np.min(f ),np.max(f ) Finds minimum and maximum values in f .
np.median(f ), np.rank()

A. Kaestner (Paul Scherrer Institut) Image enhancement March 1, 2018 21 / 85



Basic filtering
The first approach to image enhancement
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What is a filter?

General definition
A filter is a processing unit that

Enhances the wanted information
Suppresses the unwanted information

Ideally without altering relevant features beyond recognition

[Jähne, 2005]
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Filter characteristics

Low pass filters

Slow changes are enhanced
Rapid changes are suppressed

LP

Original Low-Pass Filtered

High pass filters

Rapid changes are enhanced
Slow changes are suppressed

HP

Original High-Pass Filtered
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Linear filters

Computed using the convolution operation

g(x) = h ∗ f (x) =

∫
Ω

f (x− τ ) h(τ ) dτ (3)

where
f (x) is the image
h is the convolution kernel of the filter

hf h*f
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Low-pass filter kernels

Mean or Box filter

All weights have the same value.

Example:

B =
1

25
·

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Gauss filter

G = e−
x2+y2

2 σ2

Example:
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Using a Mean filter

No noise SNR=10 SNR=5 SNR=2

No filter

3×3

5×5

7×7
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How is the convolution computed

2
52

23164

53343
6343

4342
4453

4

5
55

3.3

3.63.3

3.23.23.33.83.7

3.23.3

3.73.73.43.7

(5+3+4+4+3+3+4+3+4)/9=3.7

Note
For a non-uniform kernel each term is weighted by its kernel weight.
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Euclidean separability

The asociative and commutative laws apply to convoution

(a ∗ b) ∗ c = a ∗ (b ∗ c) and a ∗ b = b ∗ a

A convolution kernel is called separable if it can be slit in two or more
parts:

· · ·
· · ·
· · ·

=

·
·
·

∗ · · ·

Gain
Reduces the number of computations→ faster processing

3×3→ 9 mult and 8 add⇔ 6 mult and 4 add
3×3×3→ 27 mult and 26 add⇔ 9 mult and 6 add

Example

e−
x2+y2

2 σ2 = e−
x2

2 σ2 ∗ e−
y2

2 σ2

A. Kaestner (Paul Scherrer Institut) Image enhancement March 1, 2018 29 / 85



The median filter

2
52

23164

53343
6343

4342
4453

4

5
55

3

33.5

3.53343.5

33.5

4334

Sort {5,3,4,4,3,3,4,3,4} {3, 3, 3, 3, 4, 4, 4, 4, 5}
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Comparing filters for different noise types

10% salt&pepper noise Median filtered Mean filtered

Additive White G auss ian noise 
( σ =30) Median filtered Mean filtered
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Filter example: Spot cleaning

Problem

Many neutron images are corrupted by spots
that confuse following processing steps.
The amount, size, and intensity varies with
many factors.

Solutions
:-( Low pass filter
:-( Median filter
:-) Detect spots and replace by estimate
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Spot cleaning algorithm

An algorithm
Original Median

Abs(Med-Orig)
Cleaned

Abs

k<

<k

Median
NxN

*

*
Thresholds Detection masks

Outliers

Expected data

Replacement

Keep original

Parameters
N Width of median filter.
k Threshold level for outlier detection.
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Spot cleaning – Compare performance

Original

20 40 60

20

40

60

Box 5 #5

20 40 60

20

40

60

Median 5 #5

20 40 60

20

40

60

Cleaning algorithm

20 40 60

20

40

60

Difference Box

20 40 60

20

40

60

Difference Median

20 40 60

20

40

60

Difference Cleaning

20 40 60

20

40

60

The ImageJ ways

Despeckle Median ... please avoid this one!!!
Remove outliers Similar to cleaning described algorithm
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High-pass filters

High-pass filters enhance rapid changes – ideal for edge detection

Typical high-pass filters:

Gradients

∂

∂ x
=

1
2
· −1 1

∂

∂ x
=

1
32
·
−3 0 3
−10 0 10
−3 0 3

Laplacian

4 =
1
2
·

1 2 1
2 −12 2
1 2 1

Sobel

G = |∇f | =

√(
∂

∂ x
f
)2

+

(
∂

∂ y
f
)2
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Gradient example

Vertical edges

∂

∂ x
=

1
32
·
−3 0 3
−10 0 10
−3 0 3

∗ =

Horizontal edges

∂

∂ y
=

1
32
·
−3 −10 −3
0 0 0
3 10 3

∗ =

[Jähne, 2005]
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Edge detection examples

Laplacian

Both negative and positive values

Sobel

Positive values only.
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Filters in frequency space
Applications of the Fourier transform
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What is frequency space?

Introduction
A signal can be decomposed into a sum of basic harmonics defined
by amplitude, phase shift and frequency.
Fine details and sharp edges require more harmonics

 

 
Original
2 Harmonics
8 Harmonics
24 Harmonics
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The Fourier transform

Transform

G(ξ1, ξ2) = F{g} =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)e−i(ξ1 x+ξ2 y) dx dy

It’s inverse

g(x , y) = F−1{G} =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

G(ω)ei(ξ1 x+ξ2 y) dξ1 dξ2

FFT
In practice – you never see the transform equations.
The Fast Fourier Transform is available in numerical libraries and tools.

[Jähne, 2005]
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Some mathematical features of the FT

Addition

F{a + b} = F{a}+ F{b}

0 50 100 150 200 250 300
-1

-0.8

-0.6
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Convolution

F{a ∗ b} = F{a} · F{b}

F{a · b} = F{a} ∗ F{b}
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Additive noise in Fourier space

f + AWGN = + =

F{f + AWGN} = + =

Problem
How can we suppress noise without destroying relevant image features?
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Spatial frequencies and orientation

0◦

F


 ⇒

30◦

F


 ⇒

90◦

F


 ⇒

60◦

F


 ⇒
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Example – Stripe removal in Fourier space

1 Transform the image to Fourier space

F

{ }
⇒

2 Multiply spectrum image by band pass filter

·

3 Compute the inverse transform to obtain the filtered image in real
space
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The effect of the stripe filter

Reconstructed CT slice before filter Reconstructed CT slice after filter

Intensity variations are suppressed using the stripe filter on all
projections.
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Python functions

Basic filters
Gauss scikit.ndimage.filters.gaussian_filter(img,s)

Box scikit.ndimage.filters.uniform_filter(img,N)
median scikit.ndimage.filters.median_filter(img,3)
general scikit.ndimage.filters.convolve(img,[[1,2,1],[2,4,2],[1,2,1]])

np.fft.fft2(f), np.fft.ifft2(F)
Computes the Fast Fourier Transform and its inverse of image f .

np.abs(f), np.angle(f)
Computes ampitude and argument of a complex number.

f.real, f.imag
Gives the real and imaginary parts of a complex number.
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Scale spaces
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Why scale spaces?

Motivation
Basic filters have problems to handle low SNR and textured noise.
Something new is required. . .

The solution
Filtering on different scales can take noise suppression one step further.

level 0

level 1

level 2

level 3

level 4

level 5
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Wavelets – the basic idea

The wavelet transform produces scales by decomposing a signal
into two signals at a coarser scale containing trend and details.
The next scale is computed using the trend of the previous
transform

WT{s} → {a1,d1},WT{a1} → {a2,d2}, . . . ,WT{aN−1} → {aN ,dN}

The inverse transform brings s back using {aN ,d1, . . . ,dN}.
Many wavelet bases exists, the choice depends on the application.
Wavelets can have several uses:

Noise reduction
Analysis
Segmentation
Compression

[J.C.Walker, 1999][Mallat, 2009]
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Wavelet transform of a 1D signal

A1 D1

A2 D2

A3 D3

Input signals

SNR=10
Original

Using symlet-4
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Wavelet transform of an image

d1h1

a1 v1

dv*dhdv*ah

av*ah av*dh
d3h3

a3 v3

d2h2

a2 v2

f
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Wavelet transform of an image – example

WT



 =
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Wavelet noise reduction

The noise is found in the detail part of the WT
Make a WT of the signal to a level that corresponds to the scale of
the unwanted information.
Threshold the detail part dγ = |d | < γ ? 0 : d .
Inverse WT back to normal scale→ image is filtered.

Input signal

A1 D1

D1
thresholded

Filtered signal
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Wavelet noise reduction – Image example

Filtered using two levels of Symlet-2 wavelet

Noisy Image

50 100 150
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140

Denoised Image
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x10
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200

300

400
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700

Neutron CT of a lead scroll.
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PDE based scale space filters

Filters small features faster than larger ones.

Original

0.5 1 1.5

0.5

1

1.5

Diffusion filter

0.5 1 1.5

0.5

1

1.5

TV−L2 ISS filter

0.5 1 1.5

0.5

1

1.5

May work for applications where Linear and Rank filters fail.

[Aubert and Kornprobst, 2002].
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The starting point

The heat transport equation

∂T
∂t

= κ∇2T

T Image to filter (intensity ≡ temperature)
κ Thermal conduction capacity

Original Intensity diffusion

The steady state solution is a homogeneous image. . .
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Controlling the diffusivity

We want to control the diffusion process. . .

Near edges The Diffusivity→ 0
Flat regions The Diffusivity→ 1

The contrast function G is our control function

G(x) =
1

1 +
( x
λ

)n

λ Threshold level
n Steepness of the threshold

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

 

 
n=2
n=4
n=6
n=8
n=10
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Gradient controlled diffusivity

∂u
∂t

= G(|∇u|)∇2u

Image Diffusivity map

u Image to be filtered
G(·) Non-linear function to control the diffusivity

τ Time increment
N Number of iterations

This filter is noise sensitive!
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The non-linear diffusion filter

A more robust filter is obtained with

∂u
∂t

= G(|∇σu|)∇2u (4)

u Image to be filtered
G(·) Non-linear function to control the contrast

τ Time increment per numerical iteration
N Number of iterations
∇σ Gradient smoothed by a Gaussian filter, width σ
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Diffusion filter example

Neutron CT slice from a real-time experiment observing the
coalescence of cold mixed bitumen.

Original Iterations of non-linear diffusion
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nldif_iter.swf
Media File (application/x-shockwave-flash)



The continued development

90’s During the late 90’s the diffusion filter was described in terms of a
regularization problem.

00’s Work toward regularization of total variation minimization.

TV-L1

u = argmin
u∈BV (Ω)

|u|BV︸ ︷︷ ︸
noise

+ λ
2 ‖f − u‖1︸ ︷︷ ︸

fidelity


Rudin-Osher-Fatemi model (ROF)

u = argmin
u∈BV (Ω)

|u|BV︸ ︷︷ ︸
noise

+ λ
2 ‖f − u‖2

2︸ ︷︷ ︸
fidelity


with |u|BV =

∫
Ω
|∇u|2
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The inverse scale space filter

The idea
We want smooth regions with sharp edges. . .

Turn the processing order of scale space filter upside down
Start with an empty image
Add large structures successively until an image with relevant
features appears

The ISS filter – Some properties

is an edge preserving filter for noise reduction.
is defined by a partial differential equation.
has a well defined termination point.

[Burger et al., 2006]
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The ROF filter equation

The image f is filtered by solving

∂u
∂t

= div
(
∇u
|∇u|

)
+ λ (f − u + v)

∂v
∂t

= α (f − u) (5)

Variables:
f Input image

u Filtered image

v Regularization term (feedback of previous iteration)

Filter parameters
λ Related to the scale of the features to suppress.

α Quality refinement

N Number of iterations

τ Time increment
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Filter iterations

Neutron CT of dried lung filtered using 3D ISS filter

Original Filter iterations
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filter_iterations.swf
Media File (application/x-shockwave-flash)



Solutions at different times

1 30 60 100 200

500

999

A. Kaestner (Paul Scherrer Institut) Image enhancement March 1, 2018 68 / 85



Non-local smoothing

The idea
Smoothing normally consider information from the neighborhood like

Local averages (convolution)
Gradients and Curvatures (PDE filters)

Non-local smoothing average similiar intensities in a global sense.
Every filtered pixel is a weighted average of all pixels.
Weights computed using difference between pixel intensities.

[Buades et al., 2005]
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Filter definition

The non-local means filter is defined as

u(p) =
1

C(p)

∑
q∈Ω

v(q) f (p,q) (6)

where
v and u input and result images.

C(p) is the sum of all pixel weights as

C(p) =
∑
q∈Ω

f (p,q) (7)

f (p,q) is the weighting function

f (p,q) = e−
|B(q)−B(p)|2

h2 (8)

B(x) is a neighborhood operator e.g. local average around x
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Non-local means 2D – Example

Observations
Good smoothing effect.
Strong thin lines are preserved.
Some patchiness related to filter parameter t , i.e. the size of Ωi .
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Performance complications

Problem
The orignal filter compares all pixels with all pixels. . .

Complexity O(N2)

Not feasible for large images, and particular 3D images!

Solution
It has been shown that not all pixels have to be compared to achieve a
good filter effect.
i.e. Ω in eq 6 and 7 can be replaced by Ωi << Ω
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Verification
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Verify the correctness of the method

"Data massage"
Filtering manipulates the data. . .

. . . avoid too strong modifications otherwise
you may invent new image features!!!

Watch that man, he’ll make mugs of us all!

Verify the validity your method

Visual inspection
Difference images
Use degraded phantom images in a "smoke test"
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Verification using difference images

Compute pixel-wise difference between image f and g

Noisy image Ideal filter Over smoothing

Intensity scaling Geometric shift

Difference images provide first diagnosis about processing performance
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Performance testing – The smoke test

Testing term from electronic hardware testing – drive the system
until something fails due to overheating...
In general: scan the parameter space for different SNR until the
method fails to identify strength and weakness of the system.

Test strategy

1 Create a phantom image with relevant features.
2 Add noise for different SNR to the phantom.
3 Apply the processing method with different parameters.
4 Measure the difference between processed and phantom.
5 Repeat steps 2-4 N times for better test statistics.
6 Plot the results and identify the range of SNR and parameters that

produce acceptable results.
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Metrics

An evaluation procedure need a metric to compare the performance

Mean squared error

MSE(f ,g) =
∑
p∈Ω

(f (p)− g(p))2

Structural similarity index

SSIM(f ,g) =
(2µf µg + C1)(2σfg + C2)

(µ2
f + µ2

g + C1)(σ2
f + σ2

g + C2)

µf , µg Local mean of f and g.
σfg Local correlation between f and g.

σf , σg Local standard deviation of f and g.
C1, C2 Constants based on the image dynamics (small numbers).

MSSIM(f ,g) = E [SSIM(f ,g)]
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Test run example

Phantom structures

Add noise

Process

Plot results

[Kaestner et al., 2006]
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Summary
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Many filters

SNR=10

Original

SNR=100

SNR=1

SNR=inf, Box 5x5
 MSE=564.8, SSIM=0.868

SNR=100, Box 5x5
 MSE=565.0, SSIM=0.863

SNR=10, Box 5x5
 MSE=590.4, SSIM=0.654

SNR=1, Box 5x5
 MSE=3151.8, SSIM=0.134

SNR=inf, Median 5x5
 MSE=33.8, SSIM=0.994

SNR=100, Median 5x5
 MSE=34.1, SSIM=0.985

SNR=10, Median 5x5
 MSE=114.4, SSIM=0.673

SNR=1, Median 5x5
 MSE=4794.3, SSIM=0.113

SNR=inf, Wavelet
 MSE=0.0, SSIM=1.000

SNR=100, Wavelet
 MSE=5.6, SSIM=0.970

SNR=10, Wavelet
 MSE=195.7, SSIM=0.602

SNR=1, Wavelet
 MSE=4765.8, SSIM=0.119

SNR=inf, NL Diffusion
 MSE=2.4, SSIM=0.997

SNR=100, NL Diffusion
 MSE=3.0, SSIM=0.991

SNR=10, NL Diffusion
 MSE=50.8, SSIM=0.917

SNR=1, NL Diffusion
 MSE=6664.2, SSIM=0.3

SNR=inf, ISS TV2
 MSE=14.7, SSIM=0.951

SNR=100, ISS TV2
 MSE=0.6, SSIM=0.996

SNR=10, ISS TV2
 MSE=43.3, SSIM=0.832

SNR=1, ISS TV2
 MSE=1301.8, SSIM=0.495
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Details of filter performance

SNR=10

Original

SNR=100

SNR=1

SNR=inf, Box 5x5
 MSE=564.8, SSIM=0.868

SNR=100, Box 5x5
 MSE=565.0, SSIM=0.863

SNR=10, Box 5x5
 MSE=590.4, SSIM=0.654

SNR=1, Box 5x5
 MSE=3151.8, SSIM=0.134

SNR=inf, Median 5x5
 MSE=33.8, SSIM=0.994

SNR=100, Median 5x5
 MSE=34.1, SSIM=0.985

SNR=10, Median 5x5
 MSE=114.4, SSIM=0.673

SNR=1, Median 5x5
 MSE=4794.3, SSIM=0.113

SNR=inf, Wavelet
 MSE=0.0, SSIM=1.000

SNR=100, Wavelet
 MSE=5.6, SSIM=0.970

SNR=10, Wavelet
 MSE=195.7, SSIM=0.602

SNR=1, Wavelet
 MSE=4765.8, SSIM=0.119

SNR=inf, NL Diffusion
 MSE=2.4, SSIM=0.997

SNR=100, NL Diffusion
 MSE=3.0, SSIM=0.991

SNR=10, NL Diffusion
 MSE=50.8, SSIM=0.917

SNR=1, NL Diffusion
 MSE=6664.2, SSIM=0.3

SNR=inf, ISS TV2
 MSE=14.7, SSIM=0.951

SNR=100, ISS TV2
 MSE=0.6, SSIM=0.996

SNR=10, ISS TV2
 MSE=43.3, SSIM=0.832

SNR=1, ISS TV2
 MSE=1301.8, SSIM=0.495
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Take-home message

We have looked at different ways to suppress noise and artifacts:
Convolution
Median filters
Wavelet denoising
PDE filters

Which one you select depends on
Purpose of the data
Quality requirements
Available time

Remember
A good measurement is better than an enhanced bad measurement. . .
. . . but bad data can mostly be rescued if needed.
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Exercise links

The exercises will be done using python and some packages.
We will use Jupyter in the Anaconda environment.

Install and start the python environment.
Exercises 1-3
Exercise 4
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https://www.anaconda.com/download
https://github.com/kmader/Quantitative-Big-Imaging-2017/wiki/Installing-Python-and-Jupyter-Notebook-on-the-ETZ-D61-Machines
https://www.kaggle.com/kmader/exercises-1-3
https://www.kaggle.com/kmader/exercise-4
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